Diamond Materials

Diamond Materials for Quantum Application

23. September 2014: The DFG research group FOR 1493 “Diamond Materials and Quantum Applications” goes into its second funding period. FOR1493 is a national research consortium funded by the Deutsche Forsch-ungsgemeinschaft.

More Infomation

ERC Advanced Grant


Single spin optically detected magnetic resonance at 60–90 GHz

Single electron and nuclear spin magnetic resonance experiments in the context of quantum information processing and nanoscale metrology can benefit strongly from high magnetic fields.

The product basis of e.g. an electron and a nuclear spin becomes closer and closer to the eigenenergy basis. In addition, when it comes to sensing and distinguishing single molecules, the chemical shift is a handy fingerprint, and the latter gets larger and therefore better detectable for higher magnetic fields. So far single electron spin experiments were performed at magnetic fields up to 1.6 T (Si:P). Here, we explore the frequency range up to 90 GHz, respectively magnetic fields of up to 3T for single spin magnetic resonance in conjunction with optical spin readout. To exploit the available low power amplifiers in the corresponding E-band fullest, we develop suitable microwave resonators. We demonstrate the benefit of higher magnetic fields by showing longer nuclear spin lifetimes than in previous studies.

Reference: Single spin optically detected magnetic resonance with 60–90 GHz (E-band) microwave resonators
Nabeel Aslam, Matthias Pfender, Rainer Stöhr, Philipp Neumann, Marc Scheffler, Hitoshi Sumiya, Hiroshi Abe, Shinobu Onoda, Takeshi Ohshima, Junichi Isoya, and Jörg Wrachtrup
Review of Scientific Instruments, 86, 064704 (2015); doi: 10.1063/1.4922664
View online: