Diamond Materials

Diamond Materials for Quantum Application

23. September 2014: The DFG research group FOR 1493 “Diamond Materials and Quantum Applications” goes into its second funding period. FOR1493 is a national research consortium funded by the Deutsche Forsch-ungsgemeinschaft.

More Infomation

ERC Advanced Grant


Poster-Award: Creation of Dipolar Coupled Nitrogen-Vacancy Spin Qubits

Coherently coupled pairs or multimers of nitrogen-vacancy defect centers (NV) in diamond have many promising applications especially in quantum information processing. Scalable registers are essential to the progress of the field. Ion implantation is the only technique known to produce NV pairs close enough to be coupled with dipolar interaction. However, while there are many approaches to increase the resolution of ion implantation, no method is able to reliably produce working registers. Together with the density of implanted nitrogen the density of unwanted defects (e.g. divacancies) related to the implantation is also increased, resulting in inferior qubits. Here we present an estimation what nanomask implantation parameters (energy, fluence and aperture size) are most likely to produce interacting qubits. We apply our findings to an easily reproducible implantation technique, the e-beam lithography in PMMA, to create coupled NV pairs with a reasonable probability.