Important

Diamond Materials

Diamond Materials for Quantum Application

23. September 2014: The DFG research group FOR 1493 “Diamond Materials and Quantum Applications” goes into its second funding period. FOR1493 is a national research consortium funded by the Deutsche Forsch-ungsgemeinschaft.

More Infomation

ERC Advanced Grant

ERC

High fidelity transfer and storage of photon states in a single nuclear spin

Long distance quantum communication requires photons and quantum nodes that comprise qubits for interaction with light, good memory capabilities and processing qubits for storage and manipulation of photons. Owing to the unavoidable photon losses, robust quantum communication over lossy transmission channels requires quantum repeater networks. A necessary and highly demanding requirement for these networks is the existence of quantum memories with long coherence times to reliably store the incident photon states. Here, we demonstrate a high fidelity (~98%) coherent transfer of a photon polarisation state to a single solid state nuclear spin that has a coherence time of over 10 seconds. The storage process is achieved by coherently transferring the polarisation state of a photon to an entangled electron-nuclear spin state of a nitrogen vacancy (NV) centre in diamond. This nuclear spin based optical quantum memory demonstrated here paves the way towards an absorption based quantum repeater network.


Reference:
Nature Photonics | Letter
High-fidelity transfer and storage of photon states in a single nuclear spin
Sen Yang, Ya Wang, D. D. Bhaktavatsala Rao, Thai Hien Tran, Ali S. Momenzadeh, M. Markham, D. J. Twitchen, Ping Wang, Wen Yang, Rainer Stöhr, Philipp Neumann, Hideo Kosaka & Jörg Wrachtrup
Nature Photonics (2016) doi:10.1038/nphoton.2016.103 Published online: 06 June 2016