Diamond Materials

Diamond Materials for Quantum Application

23. September 2014: The DFG research group FOR 1493 “Diamond Materials and Quantum Applications” goes into its second funding period. FOR1493 is a national research consortium funded by the Deutsche Forsch-ungsgemeinschaft.

More Infomation

ERC Advanced Grant


Scalable Quantum Photonics with Single Color Centers in Silicon Carbide

Silicon carbide is a promising platform for single photon sources [1], quantum bits (qubits), and nanoscale sensors [2] based on individual color centers. Toward this goal, we develop a scalable array of nanopillars incorporating single silicon vacancy centers in 4H-SiC, readily available for efficient interfacing with free-space objective and lensed-fibers.

A commercially obtained substrate is irradiated with 2 MeV electron beams to create vacancies. Subsequent lithographic process forms 800 nm tall nanopillars with 400–1400 nm diameters. We obtain high collection efficiency of up to 22 kcounts/s optical saturation rates from a single silicon vacancy center while preserving the single photon emission and the optically induced electron-spin polarization properties. Our study demonstrates silicon carbide as a readily available platform for scalable quantum photonics architecture relying on single photon sources and qubits. The joint work of the international team of researchers in the US, Germany, Korea, Sweden and Japan have published the work in Nano Letters [3].

[1] M. Widmann, S.-Y. Lee, T. Rendler, et al., Coherent control of single spins in silicon carbide at ambient condition , Nat. Mater.
(2015) 1–21.

[2] M. Niethammer, M. Widmann, S.-Y. Lee, P. Stenberg, O. Kordina, T.
Ohshima, et al., Vector Magnetometry Using Silicon Vacancies in 4H-SiC Under Ambient Conditions, Phys. Rev. Appl. 6 (2016)

[3] M. Radulaski & M. Widmann, M. Niethammer, J.L. Zhang, S.-Y. Lee, T.
Rendler, et al., Scalable Quantum Photonics with Single Color Centers in Silicon Carbide, Nano Lett. 17 (2017) 2–6.