Diamond Materials

Diamond Materials for Quantum Application

23. September 2014: The DFG research group FOR 1493 “Diamond Materials and Quantum Applications” goes into its second funding period. FOR1493 is a national research consortium funded by the Deutsche Forsch-ungsgemeinschaft.

More Infomation

ERC Advanced Grant


Amorphous Silicon-Doped Titania Films for on-Chip Photonics

High quality optical thin film materials form a basis for on-chip photonic micro- and nanodevices, where several photonic elements form an optical circuit. Their realization generally requires the thin film to have a higher refractive index than the substrate material. Here, we demonstrate a method of depositing amorphous TiO 2 films doped with 25% Si on various substrates, a way of shaping these films into photonic elements, such as optical waveguides and resonators, and finally, the performance of these elements.

The quality of the film is estimated by measuring thin film cavity Q-factors in excess of 10 5 at a wavelength of 790 nm, corresponding to low propagation losses of 5.1dB/cm. With a refractive index of n > 2, the film supports waveguiding on different substrates, such as quartz, YAG, and sapphire, and shows evanescent coupling to chromium ions embedded in YAG, presenting film-substrate interaction. Additional functionalization of the films by doping with optically active rare-earth ions such as erbium is also demonstrated. Thus, Si:TiO 2 films allow for creation of high quality photonic elements, both passive and active, and also provide access to a broad range of substrates and emitters embedded therein.

T. Kornher, K. Xia, R. Kolesov, B. Villa, S. Lasse, et al., Amorphous Silicon-Doped Titania Films for on-Chip Photonics, ACS Photonics, Publication Date (Web): April 13, 2017, DOI: 10.1021/acsphotonics.6b00919