Diamond Materials

Diamond Materials for Quantum Application

23. September 2014: The DFG research group FOR 1493 “Diamond Materials and Quantum Applications” goes into its second funding period. FOR1493 is a national research consortium funded by the Deutsche Forsch-ungsgemeinschaft.

More Infomation

ERC Advanced Grant


Nanoscale nuclear magnetic resonance with chemical resolution

Nuclear magnetic resonance (NMR) is a valuable technique that has found application in hospitals in the form of magnetic resonance imaging (MRI). Furthermore NMR spectroscopy has been used in laboratories to identify almost all known molecules. The main limiting factor is its low sensitivity requiring millimeter-sized samples. This has been overcome by using the nitrogen-vacancy (NV) center in diamond as a NMR probe and decreased the required sample volume by many orders of magnitude down to the nanometer-scale [1]. Previous NV nanoscale NMR studies however showed poor spectral resolution making it unfeasible for spectroscopy. In our recent NV nanoscale NMR work [2], we demonstrate an improvement of the spectral resolution by a factor of 10,000 and resolve chemical shift effects in proton and fluorine containing molecules.

These results were enabled by multiple factors: The NV sensor was combined with the nitrogen nuclear spin serving as a quantum memory in order to increase the relaxation time of the whole NMR probe to more than four minutes. Next, a magnetic field of 3 Tesla was applied to distinguish between different chemical shift groups within a molecule. Furthermore the sample sensor interaction time was increased by adjusting the detection volume. Finally, applying homonuclear decoupling sequences also allowed high resolution nanoscale NMR of solid samples.

[1] Nuclear Magnetic Resonance Spectroscopy on a (5-Nanometer)³ Sample Volume, T. Staudacher, F. Shi, S. Pezzagna, J. Meijer, J. Du, C. A. Meriles, F. Reinhard & J. Wrachtrup, Science 339, 561 (2013).
[2] Nanoscale nuclear magnetic resonance with chemical resolution, N. Aslam, M. Pfender, P. Neumann, R. Reuter, A. Zappe, F. Fávaro de Oliveira, A. Denisenko, H. Sumiya, S. Onoda, J. Isoya, J. Wrachtrup, Science 357, 67 (2017).
Open access link (extern): Reprint PDF
Open access link (extern): Full Text