Diamond Materials

Diamond Materials for Quantum Application

23. September 2014: The DFG research group FOR 1493 “Diamond Materials and Quantum Applications” goes into its second funding period. FOR1493 is a national research consortium funded by the Deutsche Forsch-ungsgemeinschaft.

More Infomation

ERC Advanced Grant


Fluorescence nanodiamonds inside living cells

Quantum measurements and orientation tracking of fluorescence nanodiamonds inside living cells – Nature Nanotechnology Vol. 6 June 2011

There is a growing need for novel techniques to precisely measure cellular structures and dynamics – most importantly, if these methods can be applied under ambient conditions. Recently, by using paramagnetic labels or imaging techniques being based on such systems, new methods for ultraprecise determination of dynamics and localization have been established. In a novel paper published in Nature Nanotechnology a cooperation between the Australian and Stuttgart partners has succeeded in demonstrating precise quantum measurements of spins in living cells.

Fluorescent particles are routinely used to probe biological processes. The quantum properties of single spins within fluorescent particles have been explored in the field of nanoscale magnetometry, but not yet in biological environments. In the paper mentioned we demonstrate optically detected magnetic resonance of individual fluorescent nanodiamond nitrogen-vacancy centres inside living human HeLa cells, and measure their location, orientation, spin levels and spin coherence times with nanoscale precision. Quantum coherence was measured through Rabi and spin-echo sequences over long (>10 h) periods, and orientation was tracked with effective 18 angular precision over acquisition times of 89 ms. The quantum spin levels served as fingerprints, allowing individual centres with identical fluorescence to be identified and tracked simultaneously.
Furthermore, monitoring decoherence rates in response to changes in the local environment may provide new information about intracellular processes. The experiments reported here demonstrate the viability of controlled single spin probes for nanomagnetometry in biological systems, opening up a host of new possibilities for quantum-based imaging in the life sciences.