Diamond Materials

Diamond Materials for Quantum Application

23. September 2014: The DFG research group FOR 1493 “Diamond Materials and Quantum Applications” goes into its second funding period. FOR1493 is a national research consortium funded by the Deutsche Forsch-ungsgemeinschaft.

More Infomation

ERC Advanced Grant


A gift from universe: Molecular-sized fluorescent nanodiamonds

Doping of carbon nanoparticles with impurity atoms is central to their application. However, doping has proven elusive for very small carbon nanoparticles because of their limited availability and a lack of fundamental understanding of impurity stability in such nanostructures.

We present that diamond nanoparticles as small as 1.6 nm, comprising only ~400 carbon atoms, could be extracted from a chondrite (stony, non-metallic meteorite), Efremovka CV3, and they are capable of housing stable photoluminescent color centers, namely the silicon vacancy (SiV). Surprisingly, fluorescence from SiVs is stable over time, and few or only single color centers are found per nanocrystal. We also observe size-dependent SiV emission supported by quantum-chemical simulation of SiV energy levels in small nanodiamonds.

Although these sub-2 nm nanodiamond particles, presumably of presolar origin and older than their parent body (meteorites), exist only in a few cosmochemical laboratories, nanodiamonds in size between 2 and 5 nm have already been produced and our results have the potential to spur further research in producing smaller nanodiamonds.

Our work opens the way to investigate the physics and chemistry of molecular-sized cubic carbon clusters and promises the application of ultrasmall non-perturbative fluorescent nanoparticles as markers in microscopy and sensing.

Left: AC-HRTEM image of free standing ND grain with a size of 2 nm, middle: Confocal fluorescence scan image of the dispersed nanodiamond sample, right: Autocorrelation function showing the background-corrected raw data (black) fitted with a model including the instrument response function (blue) and the found g(2) function (red).

Molecular-sized fluorescent nanodiamonds
I. I. Vlasov, A. A. Shiryaev, T. Rendler, S. Steinert, S.-Y. Lee, D. Antonov, M. Voros, F. Jelezko, A. V. Fisenko, L. F. Semjonova, J. Biskupek, U. Kaiser, O. I. Lebedev, I. Sildos, P. R. Hemmer, V. Konov, A. Gali, J. Wrachtrup
Nature Nanotechnology (2013) DOI: 10.1038/NNANO.2013.255