Diamond Materials

Diamond Materials for Quantum Application

23. September 2014: The DFG research group FOR 1493 “Diamond Materials and Quantum Applications” goes into its second funding period. FOR1493 is a national research consortium funded by the Deutsche Forsch-ungsgemeinschaft.

More Infomation

ERC Advanced Grant


Applied physics: Hybrid sensors ring the changes

Jörg Wrachtrup & Amit Finkler
Nature 512, 380–381 (28 August 2014) doi:10.1038/512380a

An improved design for a class of magnetometer greatly increases the sensitivity of these devices — and might be the vanguard of a new generation of hybrid sensors that combine different types of signal to increase sensitivity.

When seventeenth-century sailors undertook their dangerous journeys around the Cape of Good Hope or to the Spice Islands, they had an invaluable navigational tool on board: the compass. Only with the aid of this, the most precise measurement device of those times, were they able to accomplish their daring feats. Since then, precision measurements of magnetic fields have been key drivers of basic science and of a whole wealth of technologies with applications ranging from navigation to the medical sciences. Writing in Advanced Materials, Forstner et al. report a vastly improved design for a certain class of magnetometer — a hybrid sensor that measures magnetic fields using an optical signal. …

Figure: An optomechanical magnetometer. Forstner et al. have constructed a magnetic-field sensor in which a doughnut-shaped 'whispering gallery mode' resonator device surrounds a piece of magnetostrictive material. Light is guided through a tapered optical fibre into the sensor, where it is trapped by the resonator. In the presence of a magnetic field, the magnetostrictive material expands, distorting the resonator and changing the frequency at which light resonates in the device. The change of resonance frequency is measured by a spectrum analyser and used to determine the strength of the magnetic field.

… Hybrid sensors thus seem to be an upcoming theme in sensor technology. An important further step will be to use advances in quantum technology to achieve the limits of accuracy. The resulting quantum hybrid sensors could potentially revolutionize sensor technology in various disciplines, enabling unprecedented opportunities in technology and basic science.

Forstner, S. et al. Adv. Mater. (2014).