Diamond Materials

Diamond Materials for Quantum Application

23. September 2014: The DFG research group FOR 1493 “Diamond Materials and Quantum Applications” goes into its second funding period. FOR1493 is a national research consortium funded by the Deutsche Forsch-ungsgemeinschaft.

More Infomation

ERC Advanced Grant


Coherent control of single spins in silicon carbide at room temperature

Spins in solids are cornerstone elements of quantum spintronics. Leading contenders such as defects in diamond or individual phosphorus dopants in silicon have shown spectacular progress, but either lack established nanotechnology or an efficient spin/photon interface. Silicon carbide (SiC) combines the strength of both systems: it has a large bandgap with deep defects and benefits from mature fabrication techniques. We report the characterization of photoluminescence and optical spin polarization from single silicon vacancies in SiC, and demonstrate that single spins can be addressed at room temperature. We also show coherent control of a single defect spin and find long spin coherence times under ambient conditions. Our study provides evidence that SiC is a promising system for atomic-scale spintronics and quantum technology.

Left: a, 4H–SiC crystal structure and spins at silicon vacancies. b, Scanning electron microscope image of the fabricated solid immersion lens (SIL) on the surface. c, Confocal fluorescence image scanned around the fabricated hemispherical SIL with laser excitation at 730 nm showing defects (bright spots) inside the SIL. Right: Spin Rabi oscillations of a single silicon vacancy ground state.

Matthias Widmann et al., Coherent control of single spins in silicon carbide at room temperature. Nature Materials (2014) doi:10.1038/nmat4145
Featured in a News and Views by Andrea Morello in Nature Materials; Quantum spintronics: Single spins in silicon carbide.