Diamond Materials

Diamond Materials for Quantum Application

23. September 2014: The DFG research group FOR 1493 “Diamond Materials and Quantum Applications” goes into its second funding period. FOR1493 is a national research consortium funded by the Deutsche Forsch-ungsgemeinschaft.

More Infomation

ERC Advanced Grant


Highly Sensitive Detection of Physiological Spins in a Microfluidic Device

Sensing and imaging paramagnetic species under physiological conditions is a key technology in chemical and biochemical analytics, cell biology, and medical sciences. At submicrometer length scales, nitrogen-vacancy (NV) centers in diamond offer atom-sized probes for magnetic fields. We show that spin relaxation of an ensemble NV sensor allows sensing of adsorbed and freely diffusing manganese(II) ions and adsorbed ferritin. Sensitivities approach 175 Mn ions and 10 ferritin proteins per diffraction limited spot under ambient conditions.

“Highly Sensitive Detection of Physiological Spins in a Microfluidic Device”
Ziem, F. C., Götz, N. S., Zappe, A., Steinert, S. & Wrachtrup, J., Nano letters (2013). doi:10.1021/nl401522a