Important

Diamond Materials

Diamond Materials for Quantum Application

23. September 2014: The DFG research group FOR 1493 “Diamond Materials and Quantum Applications” goes into its second funding period. FOR1493 is a national research consortium funded by the Deutsche Forsch-ungsgemeinschaft.

More Infomation

ERC Advanced Grant

ERC

Quanten statt Karat

Dieselben Eigenschaften, die Diamanten zu spektakulären Edelsteinen machen, begründen auch ihre hervorragenden Einsatzmöglichkeiten in der Quantentechnologie. Eine Forschergruppe untersucht die quantenphysikalischen Grundlagen des Materials und eröffnet so neue Wege für Halbleitertechnologie, Quanteninformationsverarbeitung und Medizin.

Die meisten Menschen dürften sich beim Betrachten eines Diamanten an den vielfältigen optischen Reflexionen der Facetten des geschliffenen Steins erfreuen. Quantenphysiker, Materialwissenschaftler und Chemiker hingegen machen sich neuerdings gemeinsam Gedanken über die Quantennatur der Diamantbausteine und interessieren sich insbesondere für die in ihnen eingeschlossenen Defekte. Die Forschergruppe „Diamond Materials for Quantum Applications“ mit Teams in Stuttgart, Freiburg, Ulm, Mainz, Leipzig, München, Berlin, Saarbrücken und Würzburg untersucht die außerordentlichen Eigenschaften von Diamant und arbeitet daran, sie gezielt für die Quantenwissenschaften auszunutzen.

Bild1: Diamantdefekte im Größenvergleich. Farbzentren sind chemische Verunreinigungen wie zum Beispiel das Stickstoffatom im Kohlenstoffgitter.
Bild1: Diamantdefekte im Größenvergleich. Farbzentren sind chemische Verunreinigungen wie zum Beispiel das Stickstoffatom im Kohlenstoffgitter.

Eine mögliche Anwendung dieses Mechanismus liegt in der Quanteninformationsverarbeitung. Hier wird versucht, Quantenmechanische Effekte zu nutzen, um besonders effektiv Informationen verarbeiten zu können. In der Forschergruppe werden dazu die Elektronen und Kerne der Defektzentren als Quantenbits genutzt. Die Ausrichtung der Spins stellt den Wert der Quantenbits dar: Parallel oder antiparallel zum Magnetfeld steht dabei für eine Eins oder eine Null. Quantenbits müssen in einem Zustand existieren, der sowohl Eins als auch Null sein kann, um das volle Potenzial der Quanteninformationsverarbeitung auszuschöpfen. Diese kohärente Überlagerung ist einer der Effekte, der in der Quanteninformationsverarbeitung genutzt wird, um beispielsweise besonders effektive Suchalgorithmen zu entwickeln. Sie ist jedoch labil und wird durch Gitterschwingungen sehr rasch in den jeweils anderen der beiden Eigenzustände – also parallel oder antiparallel zum Magnetfeld – umgewandelt. Die herausragende Härte von Diamant führt aber dazu, dass kaum Gitterschwingungen existieren, die diese Überlagerungszustände beeinflussen könnten. Die Forscherteams in Ulm und Stuttgart setzen diese besondere Qualität von Diamant ein und versuchen, die Defekte für die Quanteninformationsverarbeitung zu nutzen.

Bild 2: Die Doktoranden Thomas Häberle und Thomas Öckinghaus an einem „Diamantmagnetometer“
Bild 2: Die Doktoranden Thomas Häberle und Thomas Öckinghaus an einem „Diamantmagnetometer“

Eines der aufsehenerregendsten Anwendungsgebiete der Diamantquantentechnologie ist die Sensorik. Die Stuttgarter Arbeitsgruppe hatte bereits vor einiger Zeit herausgefunden, dass Diamantdefekte äußerst empfindliche Sensoren für Magnetfelder auf der Nanometerskala sind. Besonders ist dabei, dass diese Sensoren ihre Empfindlichkeit unter gängigen Umgebungsbedingungen erreichen. Das macht sie für die Anwendung in den Lebenswissenschaften interessant. Andere Mitglieder der Forschergruppe haben nun gezeigt, dass Diamantdefekte auch empfindliche Sensoren für Temperaturen und elektrische Felder sind. Um die Defekte zu diesem Zweck zu nutzen, werden sie in sehr kleine Diamantkristallite mit wenigen Nanometern Abmessungen verpackt. Weltweit führende Experten für die Herstellung und chemische Modifizierung von Nanodiamanten sind die Mitglieder des Würzburger Forscherteams. Sie stellen Nanodiamanten her, indem sie große, mit Farbzentren dotierte Diamanten der Freiburger Arbeitsgruppe zu Nanodiamanten zermahlen. Aus dem Mahlgut werden sodann die Partikel geeigneter Größe herausgesucht und chemisch modifiziert. Die Nanodiamanten sind mittlerweile ein weltweit nachgefragtes Material, da sie vielfach eingesetzt werden können: Beispielsweise lassen sich die Nanokristalle selbst als Sensoren für zelluläre oder auch medizinische Untersuchungen einsetzen. Indem die Forschergruppe physikalische und materialwissenschaftliche Grundlagenforschung betreibt, liefert sie daher Ergebnisse, die nicht nur für die Quantenphysik, sondern auch für eine Reihe von Anwendungsfeldern von unmittelbarem Interesse sind.

Quelle:
Quanten statt Karat, Prof. Dr. Jörg Wrachtrup, 27 JUN 2014, DOI: 10.1002/fors.201490026
Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Link (extern): Vollständiger Artikel